Vector Calculus 20E, Spring 2012, Lecture B, Midterm 2

Fifty minutes, four problems. No calculators allowed.

Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

1. Let γ be the piece of the curve $y^2=x^3$ which goes from (0,0) to (1,1). Calculate

$$\int_{\gamma} x^2 y dx - xy dy.$$

2. Let γ be the boundary of the standard square $[-1,1] \times [-1,1]$, oriented anticlockwise. Use Green's theorem to calculate

$$\int_{\gamma} (x - y^2)dx + (x^3 + y^4)dy.$$

3. Let Σ be the standard unit sphere, oriented using the outward normal, and let **F** be the vector field $\mathbf{F}(x, y, z) = (-x, y, z)$. Calculate (without using Gauss' theorem) the surface integral

$$\int_{\Sigma} \mathbf{F}.\mathbf{dS}$$

4. Let γ be the circle $x^2 + y^2 = 5$, oriented anticlockwise, and lying in the plane z = 3 inside \mathbb{R}^3 . Let **F** be the vector field $\mathbf{F}(x, y, z) = (x^2 \cos x, y^2 \cos y, xyz)$. Use Stokes' theorem to calculate

$$\int_{\gamma} \mathbf{F.dS}$$

Vector Calculus 20E, Spring 2013, Lecture A, Midterm 2

Fifty minutes, four problems. No calculators allowed.

Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

1. Let γ be the boundary of the square with vertices (0,0),(1,0),(0,1),(1,1), oriented anticlockwise. Calculate

$$\int_{\gamma} (x^2 - y^2) dx + (x^2 + y^2) dy.$$

2. Let Σ be the unit upper hemisphere $x^2 + y^2 + z^2 = 1, z \ge 0$. Calculate

$$\int_{\Sigma} z^4 \, \mathrm{dA}.$$

3. Let Σ be the surface given by $x^2 + y^2 = 4$ and $-1 \le z \le 1$, oriented using the outward normal, and let \mathbf{F} be the vector field $\mathbf{F}(x, y, z) = (x, y, z)$. Calculate

$$\int_{\Sigma} \mathbf{F.dA}$$

4. Let Σ be the surface given by $y = 9 - x^2 - z^2$ and $y \ge 0$, with normal vector pointing in the direction of increasing y. Let **F** be the vector field $\mathbf{F}(x, y, z) = (2xyz + 5z, \cos(yz), x^2y)$. Calculate

$$\int_{\Sigma} (
abla imes \mathbf{F}).\mathbf{dA}$$